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Abstract
A two-phase free boundary problem associated with a diffusion–convection
equation is considered. The problem is reduced to a system of nonlinear
integral equations, which admits a unique solution for small times. The system
admits an explicit two-component solution corresponding to a two-component
shock wave of the Burgers equation. The stability of such a solution is also
discussed.

PACS numbers: 02.60.Lj, 04.20.Ex

1. Introduction

Free boundary problems (FBP) have been the subject of several studies in the past due to their
relevance in applications [1–6]. From the mathematical point of view FBP are initial/boundary
value problems with a moving boundary [7]. The motion of the boundary is unknown (free
boundary) and has to be determined together with the solution of the given partial differential
equations. In recent studies [8–13] some free boundary problems for nonlinear evolution
equations relevant in applications have been solved. In particular in [12] a one-phase FBP
for the Rosen–Fokas–Yorstos equation [14, 15] was considered and shown to admit a unique
solution for small times; moreover an exact travelling wave solution was obtained. On the
other hand, the Rosen–Fokas–Yorstos model is a well-known nonlinear diffusion–convection
equation modeling the flow of two immiscible fluids through a porous medium. It is therefore
of interest to consider for this model a two-phase FBP, which is more complicated than its
one-phase counterpart and requires a more elaborate theory.

In this paper we formulate and solve a two-phase free boundary problem characterized
by the following system of nonlinear diffusion–convection equations,

ϑ1t

ϑ2
1

= µ1ϑ1xx − ϑ1x, ϑ1 ≡ ϑ1(x, t), (1a)
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defined over the domain −∞ < x < s(t), t > 0, and
ϑ2t

ϑ2
2

= µ2ϑ2xx − ϑ2x, ϑ2 ≡ ϑ2(x, t) (1b)

over the domain s(t) < x < +∞, t > 0, where

s(0) = b > 0.

Equations (1a) and (1b) have initial data given by

ϑ1(x, 0) = f1(x) > 0, −∞ < x < b, f1(b) = k (2a)

ϑ2(x, 0) = f2(x) > 0, b < x < +∞, f2(b) = k, (2b)

with f2(x) � f1(x), and the following set of boundary conditions:

ϑ1(−∞, t) = α1, ϑ2(+∞, t) = β2, (3a)

ϑ1(s(t), t) = ϑ2(s(t), t) = k, (3b)

with α1 > β2 > 0.
Equation (3b) in conjunction with a condition on the flow across the free boundary (see

(3c) is sufficient to determine the motion of the free boundary s(t). In principle, k in (3b)
could be a given function of time. Here we will limit ourselves to the fundamental case k
being a positive constant satisfying α1 > k > β2.

In the above relations the dependent variables ϑj , j = 1, 2, are related to the volumetric
fluids contents ϕj ’s through the relations [16]

ϑj = 1

[1 + (νj − 1)ϕj ]
, j = 1, 2,

where νj , j = 1, 2, is the mobility of the fluid with respect to a reference ideal fluid.
Moreover, µj , j = 1, 2, is a parameter related to the relative strength of capillary to

viscous forces.
The flow balance of the fluids across the free boundary can be written as

η1h1(s(t), t) − η2h2(s(t), t) = −(η2ρ2 − η1ρ1)ṡ(t) (3c)

where

ηj = (νj − 1)

νj

, j = 1, 2,

hj = 1

ηj

(1 − ϑj + µjϑjx), j = 1, 2,

and ρj , j = 1, 2, is the density of the fluid, assumed to be constant.
Due to the boundary condition (3b), equation (3c) reduces to

−λ1ϑ1x(s(t), t) + λ2ϑ2x(s(t), t) = ṡ(t), (4a)

where

λj = µj

a
, j = 1, 2, a = η2ρ2 − η1ρ1. (4b)

Our analysis is based on the method developed in [12] for the solution of the one-phase free
boundary problem.

In the next section, we reduce the above two-phase FBP to a system of coupled nonlinear
integral equations. In section 3 we prove the existence and uniqueness of the solution for
small intervals of time. In section 4 we finally construct an explicit solution of the two-phase
free boundary problem and discuss its stability properties with respect to a small perturbation.
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2. Linearization

We start our analysis by introducing the change of variables

ϑj (x, t) = ψj(z, t), j = 1, 2, z ≡ z(x, t) (5a)

with

z1x = 1

ϑ1
, z1t = ϑ1 − µ1ϑ1x, −∞ < x < s(t) (5b)

z2x = 1

ϑ2
, z2t = ϑ2 − µ2ϑ2x, s(t) < x < +∞, (5c)

whose compatibility, zxt = ztx , is guaranteed by (1a) and (1b). The above transformation
maps the system (1a)–(1b) into the following system of Burgers equations,

ψ1t = µ1ψ1zz − 2ψ1ψ1z, −∞ < z < z̄1(t)

ψ2t = µ2ψ2zz − 2ψ2ψ2z, z̄2(t) < z < +∞
(6)

where

z̄1(t) = lim
x↗s(t)

z1(x, t), z̄2(t) = lim
x↘s(t)

z2(x, t). (7)

It is worth noting that the two limits in (7) are different. In fact, when (5a)–(5c) are used
together with the flux boundary condition (4a), we get

˙̄z1(t) − ˙̄z2(t) = aṡ(t), (8)

which can be integrated giving

z̄1(t) − z̄2(t) = a[s(t) − b] (9)

where we have put z̄1(0) − z̄2(0) = 0.
The above relations imply that equations (6) are defined over semi-infinite domains with

distinct moving boundaries, given by (7). Relation (9) shows that the two moving boundaries,
z̄1(t) and z̄2(t), are forced into a relative motion induced by the motion of the free boundary
of the original problem. The relative velocity of the two boundaries is given by (9) and is
proportional to the velocity ṡ(t) of the free boundary motion.

The Burgers equations (6) are characterized by the set of initial data

ψj

(
zj0 , 0

) = fj (x), j = 1, 2, zj0 ≡ zj (x, 0) (10)

and by the boundary conditions

ψ1(−∞, t) = α1, ψ2(+∞, t) = β2, (11)

together with the boundary conditions at the moving boundaries

ψ1(z̄1(t), t) = ψ2(z̄2(t), t) = k (12a)

and

−λ1ψ1z(z̄1(t), t) + λ2ψ2z(z̄2(t), t) = kṡ(t), (12b)

where (2a), (2b), (3b) and (4a) have been used.
The two-phase FBP for the nonlinear diffusion–convection equations (1a), (1b) has then

been mapped into two distinct moving boundary problems for the Burgers equations (6) with
initial data (10) and boundary conditions (11), (12a) and (12b).
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In order to solve this problem we first observe that the Galilean transformation{
ψj − k −→ ψj , j = 1, 2

z + 2kt −→ z

leaves (6) invariant while implying trivial boundary condition in (12a).
Next, we introduce the generalized Hopf–Cole transformation [8]

ψj(z, t) = − ϕj (z, t)[
Cj(t) + 1

µj

∫ z

z̄j (t)
ϕj (z′, t) dz′] , j = 1, 2, (13a)

ϕj (z, t) = Cj(t)ψj (z, t) exp

[
− 1

µj

∫ z

z̄j (t)

ψj (z
′, t) dz′

]
, j = 1, 2, (13b)

with

Cj(0) = 1. (13c)

Under the above transformations we obtain from (6) the following system of linear heat
equations,

ϕ1t = µ1ϕ1zz, −∞ < z < z̄1(t),

ϕ2t = µ2ϕ2zz, z̄2(t) < z < +∞,
(14)

together with the compatibility conditions

Ċj (t) = −ϕjz(z̄j (t), t), j = 1, 2. (15)

Equations (14) are characterized by the initial data

ϕj

(
zj0 , 0

) = ψj

(
zj0 , 0

)
exp

[
− 1

µj

∫ z

0
ψj(z

′, 0) dz′
]

, j = 1, 2 (16a)

and by the boundary conditions

ϕj (z̄j (t), t) = 0, (16b)

λ1
ϕ1z(z̄1(t), t)

C1(t)
− λ2

ϕ2z(z̄2(t), t)

C2(t)
= kṡ(t). (16c)

The original FBP for the nonlinear diffusion–convection equations (1a), (1b) is then
reduced to the solution of two moving boundary value problems for the linear heat
equations (14), with initial data (16a) and boundary conditions at the moving boundary
(16b) and (16c). These two problems are not independent of each other. They are connected
via (16c) and (9), which puts a constraint on the relative motion of the boundaries.

We say that {ϕj (z, t), z̄j (t)}j=1,2 form a solution of the above moving boundary problems
for all t < σ, 0 < σ < ∞, when: (a) ϕj (z, t), (j = 1, 2) are solutions of (14) satisfying
(16a)–(16c), they exist and are continuous together with their derivatives; (b) z̄j (t) (j = 1, 2)

are continuously differentiable functions on [0, σ ) satisfying (9).
In order to prove the existence and uniqueness of the solution for t < σ , we assume

that the initial data fj (x) (j = 1, 2) given in (2a), (2b) are continuous with their derivatives;
moreover they are bounded:

f1(x) < α1, f2(x) < β2,

with α1 and β2 given by (3a).

4



J. Phys. A: Math. Theor. 41 (2008) 145207 S De Lillo and G Lupo

Next we observe that the unknown functions Cj(t) (j = 1, 2) entering the transformation
(13a)–(13c) satisfy the relation

−λ1 ln C1(t) + λ2 ln C2(t) = k[s(t) − b] (17)

which is obtained from (16c) together with the compatibility condition (15). Integrating (15)
and substituting back into (17) we obtain

−λ1 ln

[
1 −

∫ t

0
ϕ1z(z̄1(τ ), τ ) dτ

]
+ λ2 ln

[
1 −

∫ t

0
ϕ2z(z̄2(τ ), τ ) dτ

]
= k[s(t) − b].

We now turn our attention to the solution of (14). To this end, we introduce the fundamental
kernel of the heat equation

Kj(z − ξ, t − τ) = 1

2
√

πµj

1√
t − τ

exp

[
− (z − ξ)2

4µj(t − τ)

]
, j = 1, 2

and integrate Green’s identity for the heat equation

∂

∂ξ

(
Kj

∂ϕj

∂ξ
− ϕj

∂Kj

∂ξ

)
− ∂

∂τ
(Kjϕj ) = 0, j = 1, 2

over the domain −∞ < ξ < z̄1(t) in the case j = 1 [z̄2(t) < ξ < +∞ for j = 2], 0 < ε <

τ < t − ε and let ε → 0. Using (16b) and Kj(z − ξ, 0) = δ(z − ξ), we obtain

ϕ1(z, t) =
∫ 0

−∞
K1(z − ξ, t)ϕ1(ξ) dξ +

∫ t

0
K1(z − z̄1(τ ), t − τ)ϕ1z(z̄1(τ ), τ ) dτ, (18a)

ϕ2(z, t) =
∫ +∞

0
K2(z − ξ, t)ϕ2(ξ) dξ −

∫ t

0
K2(z − z̄2(τ ), t − τ)ϕ2z(z̄2(τ ), τ ) dτ. (18b)

We observe that on the right-hand side of (18a) [(18b)] the term ϕ1z(z̄1(t), t) [ϕ2z(z̄2(t), t)] is
unknown. It is then convenient to take the z-derivative of both sides of (18a) [(18b)] and to
take its limit as z↗z̄1(t) [z↘z̄2(t)]. By putting wj(t) = ϕjz(z̄j (t), t) (j = 1, 2) we finally
obtain (cf [13])

w1(t) = 2
∫ 0

−∞
K1(z̄1(t) − ξ, t)ϕ′

1(ξ) dξ + 2
∫ t

0
K1z(z̄1(t) − z̄1(τ ), t − τ)w1(τ ) dτ, (19a)

w2(t) = 2
∫ 0

−∞
K2(z̄2(t) − ξ, t)ϕ′

2(ξ) dξ + 2
∫ t

0
K2z(z̄2(t) − z̄2(τ ), t − τ)w2(τ ) dτ, (19b)

with

−λ1 ln

[
1 −

∫ t

0
w1(τ ) dτ

]
+ λ2 ln

[
1 −

∫ t

0
w2(τ ) dτ

]
= k[s(t) − b]. (19c)

Thus the solution of the moving boundary problems for the linear heat equations (14) has
been reduced to the solution of the system of coupled nonlinear integral equations (19a)–
(19c). Once the existence and uniqueness of the functions wj(t) (j = 1, 2) are proved
for 0 � t < σ , the existence and uniqueness of ϕj (z, t) (j = 1, 2) then follow via
(18a) and (18b). The solution of the two-phase FBP for the nonlinear diffusion–convection
equations (1a) and (1b) then follows from (13a), (16b) and (5a); we point out that the unknown
motion of the free boundary s(t) is determined via (19c).

5
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3. Contraction mapping

In order to analyze existence properties of w1(t) and w2(t) for 0 � t < σ , we denote by SM

the closed sphere ‖wj‖ � M in the Banach space of functions wj(t) (j = 1, 2) continuous
for 0 � t < σ , with the uniform norm ‖wj‖ = l.u.b.|wj(t)|. On the sphere SM we define the
mappings

yj (t) = T wj(t), j = 1, 2 (20)

where T w1 and T w2 coincide with the right-hand side of (19a) and (19b) respectively. Let us
now prove that Tj (j = 1, 2) is a mapping of SM into itself.

First, we go back to the original variables through the Galilean transformation{
ψj −→ ψj + k, j = 1, 2

z −→ z − 2kt

and then observe that (5b) and (5c), together with (7), imply

z̄j (t) =
∫ t

0
(ϑj (s(τ ), τ ) − µjϑjx(s(τ ), τ )) dτ +

∫ b

0

dx ′

ϑj (x ′, 0)
, j = 1, 2

which can be written as

z̄j (t) = Aj − µj

k

∫ t

0

ϕjz(z̄j (τ ), τ )

Cj (τ )
dτ, j = 1, 2

where (13b) has been used and Aj = ∫ b

0
dx ′

ϑj (x ′,0)
.

We then can write

|z̄j (t)| � Aj +
µj

k
Bσ

together with

|z̄j (t) − z̄j (τ )| � µj

k
B|t − τ |, (21)

where we put B = ∥∥wj

Cj

∥∥.
We now consider the right-hand side of equation (20) in the case j = 1. It is shown in

the appendix (cf (A.1)–(A.4) that

‖y1‖ = ‖T w1‖ � 2A e
‖ψ1‖
µ1

A1 +
BM

k
√

πµ1

√
σ (22)

where A = ‖ψ ′
1‖ + 1

µ1
‖ψ1‖2.

We now define M as M = max(M1,M2),Mj : Mj = 1 + 2A e
‖ψj ‖
µj

Aj
(j = 1, 2) and take

σ < σ1 where σ1 : BM
√

σ1 � k
√

πµ1. It then follows from (22) that

‖y1‖ = ‖T w1‖ � M. (23a)

Along the same lines it is possible to show that

‖y2‖ = ‖T w2‖ � M. (23b)

Equations (23a) and (23b) imply that the mappings T1 and T2 are closed.
Next we prove that Tj (j = 1, 2) is a contraction; i.e. given two solutions w

(1)
j and w

(2)
j of

(20) with
∥∥w

(1)
j −w

(2)
j

∥∥ = δ, δ < 2M , it follows that
∥∥T

(
w

(1)
j −w

(2)
j

)∥∥ � ϑδ with 0 < ϑ < 1.
To this end, we denote by Bi appropriate positive constants and obtain the following

relevant bounds (cf (A.5) and (A.6):

6
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j (t) − z̄

(2)
j (t)

∣∣ � B1δσ t

(
B1 = 2µjB

kγj

)
(24a)∣∣ ˙̄z(1)

j (t) − ˙̄z(2)
j (t)

∣∣ � B1δσ. (24b)

We now consider the case j = 1. From equations (20) and (19a) we can write

y
(1)
1 (t) − y

(2)
1 (t) = H1 + H2 (25a)

where

H1 = 1√
πµ1t

∫ A1

−∞
ϕ′

1(ξ)

⎧⎨⎩exp

⎡⎣−
(
z̄
(1)
1 (t) − ξ

)2

4µ1t

⎤⎦ − exp

⎡⎣−
(
z̄
(2)
1 (t) − ξ

)2

4µ1t

⎤⎦⎫⎬⎭ dξ, (25b)

H2 = − 1

µ1

∫ t

0
w

(1)
1 (τ )

(
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)
(t − τ)

K1
(
z̄
(1)
1 (t) − z̄

(1)
1 (τ ), t − τ

)
dτ

+
1

µ1

∫ t

0
w

(2)
1 (τ )

(
z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)
(t − τ)

K1
(
z̄
(2)
1 (t) − z̄

(2)
1 (τ ), t − τ

)
dτ. (25c)

In the appendix (cf (A.7) we derive

|H1| � A e
‖ψ1‖
µ1

A1B1√
πµ1

δσ 3/2 ≡ B2δσ
3/2 (26)

with σ < min(σ1, σ2), σ2: B2σ
3/2
2 < 1.

The estimation of H2 is obtained by writing

|H2| � |V1| + |V2| + |V3| (27a)

where

V1 = −
∫ t

0

(
w

(1)
1 (τ ) − w

(2)
1 (τ )

) [(
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)
µ1(t − τ)

]
×K1

(
z̄
(1)
1 (t) − z̄

(1)
1 (τ ), t − τ

)
dτ, (27b)

V2 = −
∫ t

0
w

(2)
1 (τ )

[(
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)
µ1(t − τ)

−
(
z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)
µ1(t − τ)

]
×K1

(
z̄
(1)
1 (t) − z̄

(1)
1 (τ ), t − τ

)
dτ, (27c)

V3 = −
∫ t

0
w

(2)
1 (τ )

[(
z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)
µ1(t − τ)

]
K1

(
z̄
(1)
1 (t) − z̄

(1)
1 (τ ), t − τ

)

×
⎧⎨⎩1 − exp

⎡⎣−
(
z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)2 − (
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)2

4µ1(t − τ)

⎤⎦⎫⎬⎭ dτ. (27d)

In the appendix the following bounds are obtained (cf (A.8)–(A.13):

|V1| � B

k
√

πµ1
δ
√

σ ≡ B3δ
√

σ ,

|V2| � BM

kγ1
√

πµ1
δσ 3/2 ≡ B4δσ

3/2,

|V3| � B7δσ
5/2,

(28)

where B7 is defined in (A.13).

7
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Combining (28), from (27a) we have

|H2| � (B3 + B4 + B7)δ
√

σ ≡ B8δ
√

σ .

From the above relation, (25a) and (26), we finally get∥∥y
(1)
1 − y

(2)
1

∥∥
δ

< (B2 + B8)
√

σ ≡ B9
√

σ .

If we choose σ satisfying σ < min(σ1, σ2, σ3), with

B9
√

σ3 < 1,

it follows that T1 is a contraction operator on SM . Following the same lines it can be proven
that T2 is also a contraction operator on SM . We also conclude that y1(t) = T1w1(t) and
y2(t) = T2w2(t) exist and are the unique fixed points in SM of T1 and T2 respectively, for
0 � t < σ .

We have thus proven that the solution of the system of nonlinear integral equations (19a)–
(19c) exists and is unique for a small interval of time, which in turn implies that the solution
of the original two-phase FBP for equations (1a), (1b) exists and is unique for small times. In
the next section we construct an explicit, particular solution of the two-phase FBP.

4. A two-component solution

In the following we show that there exists a particular solution {ϑ1(x, t), ϑ2(x, t), s(t)} of
the two-phase FBP for the system (1a) and (1b), corresponding to a two-component shock
solution for the moving boundary problems associated with the Burgers equations (6). We
write the usual shock solution of the first of the Burgers equations (6), compatible with (10)
and (11) as

ψ1(z, t) = α2 +
(α1 − α2)[

1 + exp 1
µ1

(α1 − α2)(z − V1t − z′
0)

] (29a)

with

V1 = α1 + α2, α1 > α2 > 0. (29b)

The corresponding solution of the second of (6) satisfying (10) and (11) reads

ψ2(z, t) = β2 +
(β1 − β2)[

1 + exp 1
µ2

(β1 − β2)(z − V2t − z′′
0)

] (30a)

with

V2 = β1 + β2, β1 > β2 > 0. (30b)

In the above relations α2 and β1 are constants to be determined.
We use (29a) [(30a)] on the interval −∞ < z < z̄1(t) [z̄2(t) < z < +∞] and require

ψ1(z, t) = 0, z > z̄1(t) [ψ2(z, t) = 0, z < z̄2(t)].

We now impose on ψ1(z, t) and ψ2(z, t) the condition at the free boundary (12a) and get

z̄1(t) − V1t = z′
0 +

µ1s
′
0

(α1 − α2)
, z̄2(t) − V2t = z′′

0 +
µ2s

′′
0

(β1 − β2)
,

which imply that the shock solutions are moving with the same velocities as the moving
boundaries:

˙̄z1(t) = V1 ˙̄z2(t) = V2. (31)

8
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Therefore, due to (8), their relative velocity is proportional to the velocity ṡ(t) of the free
boundary of the nonlinear diffusion–convection problem

V1 − V2 = aṡ. (32)

Next we observe that the boundary condition (12b) together with (29a), (30a), (32) and by
using the boundary condition at the moving boundary (12a), gives the condition

α1α2 = β1β2. (33)

Equations (31) and (33), when (29b) and (30b) are also used, determine the value of the
constants α2, V1, V2 in terms of β1:

α2 = β1β2

α1
(34a)

V1 = α1 +
β1β2

α1
(34b)

V2 = β1 + β2. (34c)

Finally the solution of the two-phase FBP for the system (1a), (1b) is given in parametric form
by

ϑj (x, t) =
(

∂z

∂x

)−1

, −∞ < z < z̄1(t) for j = 1, z̄2(t) < z < ∞ for j = 2,

where, by virtue of (5b) and (5c), z(x, t) solves

x =
∫ z

0
ψj(z

′, t) dz′, j = 1, 2

with ψ1(z, t) [ψ2(z, t)] given by (29a) [(30a)].
The stability properties of the above two-component solution are discussed in the next

section by studying the stability of the two-component shock wave solution of the Burgers
equations (6).

5. Stability analysis and results

In order to study the stability of the particular solution {ψj(z, t), z̄j (t)}j=1,2 analyzed in the
previous section, we consider small perturbations affecting both the shocks and the motions
of the boundaries. We set

ψj = ψ̂j + ψ ′
j , j = 1, 2

z̄j = ẑj + z′
j

(35)

where ψ̂j (j = 1, 2) is the shock solution satisfying ψ̂j (ẑj (t), t) = 0 and ψ ′
j , z

′
j are small

perturbations. It is important to observe that as a consequence of the perturbation on the
boundaries z̄j (t) (j = 1, 2) we have

s = ŝ + s ′. (36)

By linearizing (6) around ψ̂j , we get

�jt = µj�jzz − 2ψ̂j�jz, j = 1, 2 (37)

where the position ψ ′
j = �jz has been made.

9
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The boundary conditions (12a)–(12b), together with (35) and (36), give the conditions
for �j(z, t) at the free boundary:

− λ1

α1α2
�1z(ẑ1(t), t) +

λ2

β1β2
�2z(ẑ2(t), t) = s ′(t)

− λ1

α1α2

∂

∂t
�1z

∣∣∣∣
z=ẑ1(t)

+
λ2

β1β2

∂

∂t
�2z

∣∣∣∣
z=ẑ2(t)

= −λ1

k

[
�1zz +

V1

µ1
�1z

]
z=ẑ1(t)

+
λ2

k

[
�2zz +

V2

µ2
�2z

]
z=ẑ2(t)

. (38)

The change of variables

�j(z, t) = �j(Zj , t), Zj = z − Vj t, j = 1, 2

maps (37) into

�jt = µj�jZj Zj
− (2ψ̂j − Vj )�jZj

, j = 1, 2 (39)

and (38) respectively into

− λ1

α1α2
�1Z1

(0, t) +
λ2

β1β2
�2Z2

(0, t) = s ′(t) (40a)

and

− λ1

α1α2

[
�1Z1t − V1�1Z1Z1

]
Z1=0 +

λ2

β1β2

[
�2Z2t − V2�2Z2Z2

]
Z2=0

= −λ1

k

[
�1Z1Z1 +

V1

µ1
�1Z1

]
Z1=0

+
λ2

k

[
�2Z2Z2 +

V2

µ2
�2Z2

]
Z2=0

. (40b)

We now solve (39) with the initial condition

�j(Zj , 0) = hj (Zj ), j = 1, 2 (40c)

and the asymptotically vanishing condition �1 → 0 [�2 → 0] as Z1 → −∞ [Z2 → +∞].
In terms of the Laplace transform

�̃j (Zj , q) =
∫ ∞

0
e−qt�j (Zj , t) dt, j = 1, 2,

from (39) and (40a)–(40c), we get the solutions

�̃1(Z1, q) = e−P1(Z1)

[
c1 ek1Z1 +

∫ Z1

0

ek1(Z1−ξ)

2k1
H1(ξ) dξ −

∫ Z1

−∞

e−k1(Z1−ξ)

2k1
H1(ξ) dξ

]
(41a)

and

�̃2(Z2, q) = e−P2(Z2)

[
c2 e−k2Z2 −

∫ Z2

0

e−k2(Z2−ξ)

2k2
H2(ξ) dξ −

∫ +∞

Z2

ek2(Z2−ξ)

2k2
H2(ξ) dξ

]
(41b)

with

Pj (Zj ) = 1

µj

∫ Zj

0

(
Vj

2
− ψ̂j

)
dZj j = 1, 2

k1 =
[
(α1 − α2)

2

4µ2
1

+
q

µ1

]1/2 (41c)

10
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k2 =
[
(β1 − β2)

2

4µ2
2

+
q

µ2

]1/2

Hj(Zj ) = −hj (Zj ) ePj (Zj ), j = 1, 2.

(41d)

c1 and c2 in (41a) and (41b) have to be determined via the boundary conditions (40a)
and (40b).

The small perturbation ψ ′
j (z, t) (j = 1, 2) is finally obtained by inverting (41a) and (41b)

and taking the z-derivative. When the large time behavior of ψ ′
j (z, t) is considered, we observe

that all the contributions coming from the integral terms of (41a) and (41b) are asymptotically
vanishing as t → +∞, since the branch points qj of the solution are real and negative. We
therefore conclude that the only possible source of asymptotically non–vanishing contributions
to ψ ′

j (z, t) is determined by the positive singularities of c1 and c2.
When the boundary conditions (40a) and (40b) are imposed on (41a) and (41b), one

obtains for c1 and c2 a system of the form

A11c1 + A12c2 = E1 A21c1 + A22c2 = E2 (42)

where Aij and Ei (i, j = 1, 2) depend on the variable q, and on the parameters kj , λj , µj , αj

and βj . Their explicit forms are

A11 = λ1V1

2µ1α1α2
− λ1k1

α1α2
,

A12 = λ2V2

2µ1β1β2
+

λ2k2

β1β2
,

A21 = µ1

α1α2

[
− V1

2µ1
q + k1q +

α1α2V1

µ2
1

− V 2
1 k1

µ1
+

V 3
1

4µ2
1

+ V1k
2
1

]

+
µ1

k

[
− V 2

1

4µ2
1

+
α1α2

µ2
1

+ k2
1

]
,

A22 = − µ2

β1β2

[
− V2

2µ2
q + k2q +

β1β2V2

µ2
2

+
V 2

2 k2

µ2
+

V 3
2

4µ2
2

+ V2k
2
2

]

− µ2

k

[
− V 2

2

4µ2
2

+
β1β2

µ2
2

+ k2
2

]
,

with k1 and k2 given by (41c) and (41d); moreover it is

E1 = λ1I1

α1α2

[
V1

4k1µ1
+

1

2

]
− λ2I2

β1β2

[
V2

4k2µ2
− 1

2

]
+ S̃(q),

E2 = µ1V1

α1α2
h1(0) − µ1I1

α1α2

[
V1q

4k1µ1
+

q

2
− α1α2V1

2k1µ
2
1

− V 2
1

2µ1
− V 3

1

8k1µ
2
1

− V1

2

]

− µ2V2

β1β2
h2(0) +

µ2I2

β1β2

[
V2q

4k2µ2
+

q

2
− β1β2V2

2k2µ
2
2

+
V 2

2

2µ2
− V 3

2

8k2µ
2
2

− V2

2

]

+
µ1

k
h1(0) − µ1I1

k

[
V 2

1

8k1µ
2
1

− α1α2

2k1µ
2
1

− 1

2

]

− µ2

k
h2(0) − µ2I2

k

[
V 2

2

8k2µ
2
2

− β1β2

2k2µ
2
2

− 1

2

]
,

11
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Figure 1. Regions of stability and instability for different values of the parameter α2 and for
k = 3, µ1 = 0.6, β2 = 5, λ1 = 1.

where S̃(q) is the Laplace transform of s ′(t) and

I1 =
∫ 0

−∞
ek1ξH1(ξ) dξ I2 =

∫ ∞

0
e−k2ξH2(ξ) dξ.

The determinant � of the system (42) (� = A11A22 − A21A12) can be evaluated as a
function of q for different values of the parameters λj , µj , αj , βj .

The zeros of � (for positive q ) determine the instability of the shock solution ψ̂j

(j = 1, 2) with respect to the small perturbation ψ ′
j .

The results of numerical computations indicate that the behavior of � as a function of q
is strongly influenced by the values of the parameters λj , µj , αj and βj (j = 1, 2). These
results are shown in figure 1 where the parameter α2 identifies the regions of stability and
instability of the shock wave in terms of the ratio µ2

µ1
:
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We thank M Sommacal (Università degli Studi di Perugia, Italy) for helpful discussions.

Appendix

In the following we derive some relevant inequalities of section 2. We consider the norm ‖y1‖
and prove relation (22). From (16a) we observe that

|ϕ′
1(z)| =

∣∣∣∣ψ ′
1(z) − 1

µ1
ψ2

1 (z)

∣∣∣∣ exp

(
− 1

µ1

∫ z

A1

ψ1(z
′) dz′

)

�
(

‖ψ ′
1‖ +

1

µ1
‖ψ1‖2

)
exp

[
−‖ψ1‖

µ1
(z − A1)

]
≡ A e

‖ψ1‖
µ1

(A1−z)
. (A.1)
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Moreover, we note that the two terms on the right-hand side of (19a) satisfy

2

∣∣∣∣∫ A1

−∞
K1(z̄1(t) − ξ, t)ϕ′

1(ξ) dξ

∣∣∣∣
� A√

πµ1

1√
t

∫ A1

−∞
exp

[
− (z̄1(t) − ξ)2

4µ1t

]
exp

[‖ψ1‖
µ1

(A1 − ξ)

]
dξ

� 2A e
‖ψ1‖
µ1

A1 , (A.2)

2

∣∣∣∣∫ t

0
K1z(z̄1(t) − z̄1(τ ), t − τ)w1(τ ) dτ

∣∣∣∣
� 1

2
√

πµ
3/2
1

∫ t

0

|z̄1(t) − z̄1(τ )|
|t − τ |3/2

exp

[
− (z̄1(t) − z̄1(τ ))2

4µ1(t − τ)

]
|w1(τ )|dτ

� BM

k
√

πµ1

√
σ . (A.3)

When the above relations are used we get

‖y1‖ � 2A e
‖ψ1‖
µ1

A1 +
BM

k
√

πµ1

√
σ . (A.4)

In order to prove (24a) and (24b) we call

R1(t) =
(

w
(1)
1 (t)

C
(1)
1 (t)

− w
(2)
1 (t)

C
(2)
1 (t)

)
(A.5)

and observe that
‖R1‖∥∥w

(1)
1 − w

(2)
1

∥∥ � 2B

γ1
σ (A.6)

where γ1 = ∥∥C
(1)
1 − C

(2)
1

∥∥.
Our final task is to derive the bounds on |H1| and |H2|. We start our analysis with (25b)

and write

|H1| � A e
‖ψ1‖
µ1

A1

√
πµ1t

∫ A1−ξ
(2)
0

A1−ξ
(1)
0

exp

(
− y2

4µ1t

)
dy

where ξ
(j)

0 = z̄
(j)

1 (t) − 2‖ψ1‖t, (j = 1, 2), and (A.1) has also been used. The above relation
together with (24a) implies

|H1| � A e
‖ψ1‖
µ1

A1

√
πµ1t

∣∣z̄(1)
1 (t) − z̄

(2)
1 (t)

∣∣
� A e

‖ψ1‖
µ1

A1B1√
πµ1

δσ 3/2 ≡ B2δσ
3/2.

(A.7)

In order to study |H2| we consider first (27b) and get

|V1| � δ

2
√

πµ
3/2
1

∫ t

0

∣∣∣∣∣ z̄(1)
1 (t) − z̄

(1)
1 (τ )

t − τ

∣∣∣∣∣ dτ√
t − τ

<
B

k
√

πµ1
δ
√

σ ≡ B3δ
√

σ .

(A.8)
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Next, from (27c) we can write

|V2| � M

2
√

πµ
3/2
1

∫ t

0

∣∣∣∣∣
(
z̄
(1)
1 (t) − z̄

(2)
1 (t)

) − (
z̄
(1)
1 (τ ) − z̄

(2)
1 (τ )

)
(t − τ)

∣∣∣∣∣ dτ√
t − τ

� M

2
√

πµ
3/2
1

∫ t

0

∣∣ ˙̄z(1)
1 (α) − ˙̄z(2)

1 (α)
∣∣ dτ√

t − τ

<
BM

kγ1
√

πµ1
δσ 3/2 ≡ B4δσ

3/2 (A.9)

where the mean-value theorem, (A.5), (A.6) and (24b) have been used.
Finally for the estimate of V3 we put in (27d)

Q =
[(

z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)2 − (
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)2]
4µ1(t − τ)

= 1

4µ1(t − τ)

[(
z̄
(2)
1 (t) − z̄

(1)
1 (t)

) − (
z̄
(2)
1 (τ ) − z̄

(1)
1 (τ )

)]
× [(

z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)
+

(
z̄
(1)
1 (t) − z̄

(1)
1 (τ )

)]
. (A.10)

By using (24a) and (21) we get

|Q| � BB1δσ t

k
<

BB1

k
δσ 2 ≡ B5δσ

2. (A.11)

On the other hand, from (21) it also follows that

|Q| � µ1B
2

2k2
|t − τ | <

µ1B
2

2k2
≡ B6. (A.12)

From (27d) we then get

|V3| � M

2
√

πµ
3/2
1

∫ t

0

∣∣∣∣∣
(
z̄
(2)
1 (t) − z̄

(2)
1 (τ )

)
(t − τ)

∣∣∣∣∣ |1 − e−Q|√
t − τ

dτ

� MB

k
√

πµ1
|Q| e|Q|√σ

� MBB5 eB6

k
√

πµ1
δσ 5/2 ≡ B7δσ

5/2 (A.13)

where the inequality |1 − e−Q| � |Q| e|Q| has been used.
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